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1 Introduction

Social scientists frequently analyze data with a geospatial component.1 In doing so, datasets associated

with different levels of spatial aggregation often need to be merged—for instance, when trying to com-

bine county- and commuting-zone-level variables (e.g., Autor, Dorn, Hanson and Majlesi, 2020). The

boundaries of geographic units may also change over time, as with U.S. counties across census years.

If individual-level or other highly local data are not available, researchers must rely on crosswalks to

associate aggregate data across these different units. Crosswalks serve to map data associated with some

origin spatial unit to the boundaries of the reference unit on which the analysis focuses.

A common approach to such boundary harmonization involves areal interpolation (Markoff and

Shapiro, 1973; Goodchild and Lam, 1980; Hornbeck, 2010). We illustrate this approach using an exam-

ple. Suppose a researcher wishes to harmonize the boundaries of U.S. counties as of 1880 to those from

1870, in the interest of having consistent spatial units over time. Importantly, some county boundaries

changed between 1870 and 1880 and thus do not coincide across these years. For instance, suppose

county C70 split after 1870 into two counties: C80
1 , which lies totally in C70, and C80

2 , which lies only

partly in C70. To approximate the portion of C80
2 ’s factors that exist within C70’s boundaries, the re-

searcher could intersect both sets of boundaries and compute the share of C80
2 ’s area, a < 1, that lies in

C70. Then, the researcher could re-aggregate each factor of interest within C70 by taking the weighted

sum of the values from C80
1 and C80

2 , using the area shares computed in the previous step as weights

(i.e., 1 and a, respectively).2 A core assumption underlying this procedure is that the factors measured

by the aggregate data (e.g., population stocks) are uniformly distributed in space within the boundaries

of the origin units being disaggregated. A large set of papers has adopted this approach for the pur-

poses of both intertemporal spatial analysis (see Hornbeck and Naidu, 2014; Lee and Lin, 2018; Bazzi,

Fiszbein and Gebresilasse, 2020; Calderon, Fouka and Tabellini, 2023; Ferrara and Testa, 2023; Han,

Milner and Mitchener, 2023) and spatial harmonization across different contemporaneous units (Eckert,

Gvirtz, Liang and Peters, 2020; Testa, 2021; Bazzi, Ferrara, Fiszbein, Pearson and Testa, 2023).

This paper makes four contributions to this body of work, with potential for broad application among

economic historians, urban economists, political scientists, and other spatial researchers. First, we ad-

dress prevailing concerns that the uniformity assumption underlying area-based weights may generate

errors in harmonized data, to the extent that boundaries do not neatly coincide across origin and ref-

erence units (Gregory, 2002; Logan, Stults and Xu, 2016; Hanlon and Heblich, 2022). To do this, we

apply a procedure for generating a set of population-based weights in the context of the conterminous

U.S. between 1790 and 2020, based on several spatial models of historical sub-county population dis-

tribution (Fang and Jawitz, 2018; Leyk and Uhl, 2018). We use these data to produce crosswalks that

relax the spatial uniformity assumption and identify where populations are more concentrated within

counties. This is useful for cases in which boundary harmonization involves spatial disaggregation of

county-level stock data. In such cases, identifying where people disproportionately live within a county

lets us assign larger weights to data for some parts of counties than their areal coverage might entail

under an area-based approach. This is particularly important for data that are likely to be correlated with

population density, such as total income and the number of college-educated workers.
1Since 2000, Google Scholar registered more than a quarter million articles involving the term “county level.”
2To provide a concrete example, take the number of manufacturing firms F in 1880 and compute FC80

1
+ FC80

2
× a to

harmonize this variable to the 1870 boundary for county C70.
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Second, we use these new weights to extend previous county-to-county crosswalks across all U.S.

census years (Hornbeck, 2010; Eckert et al., 2020). These build algorithmically on previous approaches

in Schroeder (2016), who models historical population distributions within 2010 U.S. county boundaries,

and Beddow and Pardey (2015), who use information on the spatial distribution of production in the U.S.

as of 2000 to map historical county-level crop data to those boundaries. Our resource is complementary

to the work of Berkes, Karger and Nencka (2023)—whose approach granularly geocodes individuals to

towns and cities for the 1790–1940 U.S. Censuses—for cases in which sub-county data are not available

to the researcher.

Third, we use both area- and population-based models to generate a novel database of county-to-

congressional district (CD) crosswalks for the entirety of U.S. history. An expansive set of research in

political science and historical political economy entails analysis at the CD level (e.g. Lee, Moretti and

Butler, 2004). Yet, relevant aggregate data are much more likely to be available at the county level,

whose boundaries often do not coincide neatly with CD boundaries. Meanwhile, fully disaggregated

data seldom associate individuals with their CD. CDs also offer a particularly relevant application of our

population-based weights: to the extent that more densely-populated areas are associated with smaller

CDs, area-based weights are likely to underestimate the populations of an urban CD and overestimate

the populations of a non-urban CD located within the same county. The more concentrated urban ag-

glomeration is relative to a county’s area (e.g., as in mountainous or marshland areas), the greater this

bias is likely to be. Population-based weights help us overcome such bias.

Lastly, we provide a formal test of the performance of area- and population-based crosswalks, by

comparing data that were collected at the CD level with those generated from crosswalked county-

level information. For this purpose, we replicate the CD-level data and key estimates in Lee et al.

(2004). To measure CD characteristics, the authors importantly use official CD-level data from the

U.S. Census of Population and Housing for 1960 through 1990. These ground-truth data allow us to

evaluate the performance of the area- versus population-based weighting approach when crosswalking

county-to-CD level aggregates. Using county-level census data from Haines (2010), we show that while

both area- and population-based crosswalks produce similar data to official measures, replicating key

results in Lee et al. (2004), data constructed using population-based weights consistently outperform

area-based ones in terms of similarity to official measures. In particular, the average accuracy of the

data constructed with the population-based crosswalks is almost 20% higher than those using the area-

based data. The best-performing crosswalk in this application uses built-up property data to construct

population-based weights. We conclude by discussing some limitations of population- and area-based

crosswalks. All crosswalks, teaching material, and replication files can be downloaded from https:

//doi.org/10.3886/E150101.

2 Constructing the Geographic Crosswalks

In this section, we describe the methods used to generate our area- and population-based crosswalks,

with the intention of providing applied researchers with prerequisite background knowledge and in-

tuition for using the crosswalks. We focus on the construction of the county-to-congressional-district

(CD) crosswalks, which span the 1st through 116th U.S. Congresses from 1790–2020, as harmonization

across geospatial units defined at different levels of aggregation is particularly prone to the problems be-

ing addressed in this paper. These methods generalize to the harmonization of county boundaries across
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U.S. censuses.3 For the construction of our crosswalks, we use data for county boundaries provided by

Manson, Schroeder, Van Riper, Kugler and Ruggles (2020) and CD boundaries from Lewis, DeVine,

Pritcher and Martis (2021).

We construct three sets of county-to-CD crosswalks, based on: (i) the nearest census year, relative

to the starting year of a given Congress; (ii) the census decade shared with the starting year of a given

Congress; and (iii) the census of apportionment associated with a given Congress.4 This is to provide

researchers with sufficient flexibility to choose the time dimension that best suits their application. Each

of these includes six kinds of weights:

1. Area-based (model 1, or M1).

2. Population-based (M2), with county area divided into urban and rural areas.

3. Population-based (M3), with county area divided into urban and rural areas after excluding non-

inhabitable areas.

4. Population-based (M4), with county area divided into urban and rural areas after excluding non-

inhabitable areas, with additional weighting for topographic suitability (i.e., elevation).

5. Population-based (M5), with built-up settlement areas indicated in space (1810–2020 only).

6. Population-based (M6), with built-up property counts indicated in space (1810–2020 only).

M1 is equivalent in construction to existing area-based crosswalks. M2–M4 use maps based on historical

population estimates for 1 × 1 kilometer grid cells from Fang and Jawitz (2018), whereas M5–M6 use

maps based on historical property records for 250× 250 meter grid cells from Leyk and Uhl (2018).

In addition to these county-to-CD crosswalks, we also construct county-to-county crosswalks for all

pairs of censuses from 1790 to 2020, using both area-based weights and our population-based weights.

Between these county-to-CD and county-to-county crosswalks, our crosswalks can be used to harmonize

boundaries of any county to any CD in U.S. history for all incorporated conterminous U.S. states.

2.1 Constructing Area-based Crosswalks

Area-based harmonization procedures generally entail a process of spatial disaggregation and re-aggregation.

For our county-to-CD crosswalks, this process involves intersecting a county map from a particular cen-

sus year with a CD map from a given Congress year. Counties are then disaggregated into a set of

sub-county units (henceforth “county-parts”), based on the CD in which they are located. For exam-

ple, counties that are intersected by a single CD boundary are located partly in two CDs and thus have

two county-parts. Meanwhile, counties that lie wholly within a CD without intersecting its boundaries

are their own and only county-part. We then calculate the areas (in square meters) of all counties, all

CDs, and all county-parts.5 Once counties are disaggregated given their intersections, county-parts are
3Area-based crosswalks cover all admitted U.S. states, while population-based crosswalks are limited to the conterminous

U.S., excluding Alaska and Hawaii.
4For example, under the first approach, counties from the 1800 U.S. Census are harmonized to CDs for the 4th through 8th

Congresses, spanning 1795 through 1804; under the second approach, counties from the 1800 U.S. Census are harmonized to
CDs for the 7th through 11th Congresses, spanning 1801 through 1810; and under the third approach, counties from the 1800
U.S. Census are harmonized to CDs for the 8th through 12th Congresses, spanning 1803 through 1812.

5Given our setting, we use a “USA Contiguous Albers Equal Area Conic” projection for this.
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Figure 1: Minnesota Counties, CDs, and Population Distribution Based on 1970 U.S. Census

(a) Counties only (b) County and CD intersection

Note: This figure shows the land area of the state of Minnesota with population distribution information for 1970, where darker orange
implies a greater number of residents per square kilometer. The gray boundaries show the state’s county boundaries as of the 1970 U.S.
Census. The thicker, blue lines in panel (b) show the state’s congressional district (CD) boundaries as of the 93rd Congress (1973-4).
County shapefiles are from Manson et al. (2020). CD shapefiles are from Lewis et al. (2021). Population distribution information for 1970
comes from M3 in Fang and Jawitz (2018).

re-aggregated based on their associated CD, with the sum of the areas of the county-parts matching the

area of the whole CD.

In the process, the data values associated with the initial counties (e.g., total population, total number

of Blacks) are re-associated with CDs. Under an area-based procedure, each county-part is assigned each

of its county’s data values, which are then weighted by the share of the county’s total area that lies in

that county-part. These weights add up to 1 for each county whose boundaries are being harmonized. A

given CD’s data values are in turn the aggregates of these weighted values, summed across all counties

that have a county-part located in that CD. Values associated with a county whose area is shared equally

by two CDs are each weighted by 0.5, while values associated with a county that lies wholly within a

CD are weighted by 1. In the Online Appendix, we describe the process and data used to generate these

weights in ArcMap for a given census and Congress year pair.

Example: Minnesota. Minnesota offers a useful case study of this method. Figure 1 shows Minnesota’s

county boundaries in 1970 and its congressional district boundaries as of 1973. Note that CD 7, in the

state’s northwest corner, consists only of whole counties. We can add up the values of each stock

variable across these 27 counties within CD 7, and it will give us CD 7’s values for those same variables.

The same goes for CD 4, which consists only of Ramsey County. If every county in Minnesota had a

population of 1,000 in 1973, CD 7 would have 27,000 residents, while CD 4 would have 1,000.

Other counties, like CD 8 in the state’s northeast corner, may consist of whole counties and/or

portions of other counties. For CD 8, an example of the latter case is Anoka County, of which a small
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portion—about 1/20th of the area of the whole county—is instead part of CD 5 together with part of

Hennepin County. Hence, under an area-based crosswalk, 19/20th of the population and of other stock

variables associated with Anoka County are associated with CD 8. If every county in Minnesota had

a population of 1000, CD 8, which also consists of 10 whole counties, would be estimated as having

10,950 residents.

There are potential drawbacks to using this area-based method when origin and reference unit bound-

aries do not neatly coincide, as in the latter case. Chiefly, the output is accurate only under certain

conditions on the distribution of population. To see this, note the background coloration of Figure 1,

which plots alongside county and CD boundaries a map of population distribution from Fang and Jawitz

(2018). This shows that, although only about a tenth of the area of Hennepin County is located within

CD 5, the part that is includes some of the most populated areas of the county (as shown in dark or-

ange). Yet despite the fact that this part of Hennepin County is among the most densely populated

areas in the county, an area-based approach would assign only 10% of the county’s population to CD

5—significantly underweighting this county-part, while overweighting all of the others.

When is an Area-based Crosswalk Appropriate? Suppose a researcher is attempting to associate several

county-level stock variables with congressional districts. For the area-based weights to be appropriate

in settings where county and CD boundaries overlap, the following uniformity condition is key:

Assumption (Uniformity). Let C be any continuous, two-dimensional county with area c > 0 and a

vector of positive and finite values P = (p1, p2, ..., pn). Let A be any continuous, two-dimensional

subset of C with area ac ∈ (0, c) and a vector of positive and finite values R = (r1, r2, ..., rn). C

satisfies uniformity in population distribution if R = aP for all A ⊂ C.

In this definition, P and R represent the set of stock variables at the county and sub-county (e.g., neigh-

borhood) level, respectively, such as total population, total income, the total number of Spanish-speakers,

etc. in their respective areas. Hence, when uniformity holds, a neighborhood’s share of a given sub-

population in a county is always equal to its share of the county’s total area.6 Under this condition,

an area-based crosswalk would accurately map data associated with one set of spatial units (e.g., coun-

ties) to the boundaries of another (e.g., congressional districts). This might be plausible in relatively

low-density settings, such as farmland, with spatially homogeneous populations; when harmonization

involves highly disaggregated data; or when the “origin” units being harmonized lie neatly within the

“reference” units on which the analysis focuses, with little overlap in boundaries. For example, a re-

searcher studying a sample of U.S. counties across several decades may be able to re-aggregate counties

backward in time, as in Hornbeck (2010).

In many settings, however, uniformity will not hold, e.g., due to the presence of agglomeration

forces making the distribution of population uneven across space. In such cases, area-based crosswalks

will generate errors relative to ground-truth data whenever origin units must be disaggregated, such as

when a county lies in two or more CDs. The more often the boundaries of origin and reference units

do not coincide, the more such error will occur and accrue. To address this concern, we construct a set

of population-based crosswalks in addition to the area-based crosswalk, which allow for heterogeneous

population distributions within counties. We then compare the relative performance of these crosswalks.

6Note that uniformity does not, however, mean that population need be uniformly distributed across counties.
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2.2 Constructing Population-based Crosswalks

We now seek to relax the uniformity assumption, through the use of information on historical sub-county

population distribution from Fang and Jawitz (2018) (for short, FJ) and Leyk and Uhl (2018) (for short,

LU). FJ estimate historical population counts for 1 × 1 kilometer grid cells, which we use to construct

a set of population-based weights. These include: (i) model 2 (M2), which is based on a division of

counties into urban and rural areas, with urban population counts being distributed around city centers

according to the power law scaling relationship detailed below;7 (ii) model 3 (M3), which is is based on a

version of M2 that first excludes non-inhabitable areas, such as bodies of water or areas where settlement

is legally restricted, such as national or state park; and (iii) model 4 (M4), which is based on a version

of M3 that also weights population counts based on topographic suitability as measured by county mean

elevation. LU, in contrast, derive proxies for historical population size for more granular 250 × 250

meter grid cells based on historical property records data, which they show to be highly correlated with

local population size. We use these to construct two further weights: (i) model 5 (M5), which is based

on their binary measure of “built-up area,” which assigns a value of 1 to a grid cell if it contains at least

one built-up property record in a given year, and (ii) model 6 (M6), which is based on the “built-up

property” counts themselves, summing the number of records (e.g., building units) within the grid cell

in a given year.8 We will now describe the underlying spatial models from FJ and LU in greater depth,

after which we will discuss how we use these to construct the crosswalk weights themselves.

Describing the Spatial Models in Fang and Jawitz (2018). Given that historical sub-county spatial

data for population hardly exist, FJ’s models first estimate the spatial extent of urban areas for the

conterminous United States over time using population distribution information for urban areas from the

2000 U.S. Census. Concretely, FJ extrapolate the size of the urban area to previous census years, using

the following power law scaling relationship,

AU,φ = αδP
βδ
U,φ (1)

where PU,φ is the population size of urban area φ in U.S. Census division δ in a given year, and where αδ

and βδ are the coefficients of the power function, which are fixed scaling factors based on the areas and

populations of U.S. cities in 2000. Using historical population data from the census, FJ then estimate

the historical areal extents of urban areas back to 1790, within which population counts are distributed

according to the models described above.

The motivation for the use of such a power law distribution comes from Chen (2015) and has fa-

mously found applications in describing other urban regularities, such as Zipf’s law. Generally, the

growth and size of urban areas has been shown to follow remarkably robust statistical distributions (see

Eeckhout, 2004), and even large scale shocks tend to not alter cities’ population growth trajectories

over the long-run (Davis and Weinstein, 2002; Miguel and Roland, 2011). All of FJ’s models of sub-

county population rely on this assumption, while a subset make further adjustments for the presence of
7Note that this still assumes some uniformity, within urban and rural areas; this is further relaxed in M3 and M4.
8Two exceptions for M2–M4 are 1960, for which Fang and Jawitz (2018) lacked urban population data, and 2020, for

which no granular population data were available. For 1960, we construct a 1 × 1 kilometer grid cell population distribution
map based on census tract population data, from which alternative population-based weights are derived. Appendix Section
2.2 provides more details on the construction of the 1960 population grid. For 2020, we use 2010 population distribution to
construct population-based weights. Three exceptions for M5–M6 are 1790, 1800, and 2020. We exclude these models for the
former two years and use 2010 settlements and properties to construct these models for 2020.
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non-inhabitable areas and topographic suitabilities—the basis for our weights M3 and M4, respectively.

For a more in-depth description of these models and the data used to construct them, see the Online

Appendix. For additional discussion of FJ’s assumptions and potential drawbacks, see Section 4.

Describing the Spatial Models in Leyk and Uhl (2018). In contrast to FJ, LU derive maps of histor-

ical urban settlements from property records data in the Zillow Transaction and Assessment Database

(ZTRAX) beginning in 1810. Records of building and building units are mapped to 250×250 meter grid

cells, which can then be aggregated within county or other polygons. Comparisons with county-level

population data for 1860–2010 in their Table 1 show that a one unit increase in built-up property records

within a county is associated on average with 2.68 (0.01) additional residents, with these records ac-

counting for nearly 93% of the variation in total population size over time across sample counties. Prop-

erty records thus potentially provide an accurate and granular proxy for historical population counts.

Based on these property records, LU construct several maps, including ones based on a binary mea-

sure of “built-up areas” and another based on “built-up property” counts themselves—the basis for our

weights M5 and M6, respectively. For more descriptions of the LU models and their underlying data,

see the Online Appendix. Sections 3 and 4 further discuss the different models and their performance.

Constructing the Crosswalks. In order to relax the uniformity assumption, our population-based

crosswalks no longer base the disaggregation of county-level data on relative area but rather on relative

population, using these models of historical sub-county population distribution from FJ and LU. The

resultant maps allow us to calculate for each census year a total population count (or property-based

proxy) for each county, PC , as well as for each county-part within that county that lies in a different CD,

PA, with
∑

A∈C PA = PC . These values are calculated by summing the grid cell values within those

respective polygons, using GIS software. Then, similar to the area-based crosswalk, we use the ratio of

PA to PC as a weight for each county-part, with which to multiply a county’s relevant stock data prior

to its aggregation to the CD level.9

In contrast to the area-based crosswalk, relatively small county-parts in terms of area might in some

cases receive a relatively large weight—for instance if they are associated with an urban area. Such

discrepancies between area- and population-based weights are shown in Figure 2, which relates weights

from each of the five population-based models to those from the area-based one for the 2010 U.S. Census

and the 112th Congress. Although weights are highly correlated across models overall, many individual

weights differ significantly.

For example, take Dorchester County, SC, a suburban county that partly overlaps with the Charleston

metropolitan area. As of 2011, nearly 80% of its area lied within CD 6. At the same time, around 80% of

its population instead lived in the much smaller and more urban CD 1. M1 would have associated around

80,000 Dorchester residents with the wrong congressional district during the harmonization process,

something remedied by the population-based models.

Even more extreme is Monroe County, FL. Over 99% of its residents live in the very tiny Florida

Keys, represented in 2011 by CD 18, whereas around 85% of its area, mostly wetlands, were in CD

25. The more concentrated the urban area relative to the size of the county, the more likely these

discrepancies are to exist, as they do in desert areas like Phoenix, AZ, and Las Vegas, NV, as well as in

swamp and wetland areas like Southern Louisiana and the Florida Peninsula.
9In the Online Appendix, we describe the process and data used to generate these weights in ArcMap for a given census

and Congress year pair.
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Figure 2: Comparison of Area- and Population-based Weights

Note: Figure shows the relationship between our area-based weights and each of our population-based weights for 7,493 county-parts,
based on 3,109 counties from the 2010 U.S. Census and 432 congressional districts (CDs) from the 112th Congress (2011-12). These
exclude Alaska and Hawaii, for which Fang and Jawitz (2018) and Leyk and Uhl (2018) lack historical population distribution information.

2.3 Implementing the Crosswalks

Our crosswalks can be used to harmonize historical county boundaries to those from any other census

period between 1790 and 2020. Whether using area- or population-based crosswalks, a possibly cru-

cial choice is which base year to pick. A commonly-used option is to crosswalk to the year in which

units have the largest spatial extent—with the caveat that this may generate some loss of spatial preci-

sion due to sample aggregation.10 Our crosswalks can also be used to harmonize county boundaries to

contemporaneous CD boundaries. These include three options, based on counties associated with: (i)

the nearest census year, relative to the starting year of a given Congress; (ii) the census decade shared

with the starting year of a given Congress; and (iii) the census of apportionment associated with a given

Congress. Each crosswalk file includes weights from M1–M6, except for 1790 and 1800, which include

only M1–M4, and except for Alaska and Hawaii, which have weights based on M1 only. Between the

county-to-CD and county-to-county crosswalks, our crosswalks can be used to harmonize the boundaries

of any county to any CD in U.S. history for all incorporated conterminous U.S. states.

The process of implementing these crosswalks is straightforward. We will illustrate this process

using an example. Suppose one were interested in harmonizing data defined for 1960 U.S. county

boundaries to CD boundaries for the 88th Congress. Suppose the variable of interest is the percent of

the population that was born in Mexico. One would do the following:

1. Obtain the county-level data for 1960 for two variables: (i) total population and (ii) total number
10Of course, any disaggregation into smaller units can introduce error in harmonized data, regardless of the weights used.
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of persons born in Mexico. It is critical to harmonize only county-level stock variables for weights

to be appropriate. If source data are shares or average outcomes, one should transform the variable

first, e.g., by multiplying by total population.

2. Given some set of county identifiers (e.g., FIPS or NHGIS codes), merge the 1960 county file

with the 1960 to 88th Congress crosswalk file. This expands the set of counties into the full set of

county-parts, based on the CDs they are associated with.

3. Take note of which counties are not merged successfully or contain missing data. In the latter case,

data for the CDs in which they lie should likely be considered missing as well. Then multiply the

stock variables by the weights associated with the county-parts. Weights may differ across the six

models in our crosswalk.

4. Finally, collapse (i.e., sum) the weighted counts for each variable by CD identifiers. Round or

mark as missing any cell as needed. The unit of observation is now the CD.

See the Online Appendix for sample Stata and R code demonstrating this process.

3 Application

In this section, we showcase the usefulness and accuracy of our county-to-CD crosswalks, by replicat-

ing the CD-level data and the balance tests that underscore the regression discontinuity (RD) empirical

strategy used in Lee et al. (2004). RD designs exploit plausibly-random variation in exposure to some

treatment, by comparing groups just below and above the treatment’s intervention threshold. In em-

pirical political economy, one application of RD considers the effects of elections based on partisan

representation, comparing places (e.g., CDs) where a party’s candidates narrowly won against those

where they narrowly lost. In principle, such places around this “tied-election” threshold are likely to be

highly similar. In practice, balance tests, such as those used in Lee et al. (2004), serve to test for the

exogeneity of the CD characteristics around the tied-election threshold in support of this identification

strategy. To measure CD characteristics, the authors importantly use the official CD-level data from the

U.S. Census of Population and Housing for 1960 through 1990. We use county-level census data from

Haines (2010) to test whether these data, and in turn the results of the balance tests in Lee et al. (2004),

are replicated when CD characteristic data are harmonized from county-level data, as well as whether

this differs across our six crosswalk weighting models.

We begin by using our crosswalks to construct CD-level stock data from the county-level census data,

with which we compare to the official CD-level census data used in Lee et al. (2004). We focus on six

variables for which we can confidently reconstruct the data: (i) total population, (ii) total real income,

(iii) urban populations (of 2,500+ inhabitants), (iv) Black population, (v) number of manufacturing

workers, and (vi) number of eligible voters.11 These reconstructions compare favorably to the official

CD-level census data across all five of our population-based models, as gauged by their correlations

with the former as shown in Figure 3. On average, the correlations between the data values generated

using M2–M6 and the official data are around 0.91, whereas the correlation is about 0.76 for M1. This

means that our population-based approach improves the correlation with the official data by almost 20%
11Our efforts to reconstruct a high school graduation measure are met with mixed results and differ significantly from the

measure in Lee et al. (2004). We therefore exclude this comparison.
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Figure 3: Comparing Harmonized Data with Official CD-Level Census Data

Note: Figure compares harmonized CD-level data generated by our six crosswalk weights to official CD-level census data, as featured in
Lee et al. (2004), from the U.S. Census of Population and Housing of 1960, 1970, 1980, and 1990. These are defined for CD boundaries for
the U.S. Congresses at the top of the corresponding apportionment periods—the 88th, 93rd, 98th, and 103rd U.S. Congresses, respectively.
These boundaries are assumed fixed for each decade in Lee et al. (2004). We therefore limit our comparisons here to those four Congresses,
for which the official data correspond to the true measures for each district. One advantage to our crosswalks is that they can harmonize
county-level data to CD boundaries for any Congress, allowing researchers to account for changes in CD boundaries between congressional
apportionments.

relative to an area-based one. This result mirrors the evaluation of areal interpolation for 2000-10 census

tract data in Logan et al. (2016), who show that areal interpolation can lead to large errors. Meanwhile,

among the five population-based models, none clearly or consistently outperform the others, with the

exception of M6—though we will discuss the limitations and inherent tradeoffs of using the various

models more in Section 4.

Table 1 reports further summary statistics alongside these correlations, which yield similar implica-

tions. Note that the standard deviation in population in the CD-level census data featured in Figure 3 is

about 379,400 individuals. Relative to this value, the root MSE corresponding to M1 is about 259,040

individuals in terms of the deviation from the census-based measure, which is 68% of a standard devia-

tion. For M6, the root MSE is 83,492 individuals, which is only 22% of a standard deviation.

At the same time, harmonization is more successful for some variables than others, regardless of

model used. Of the six variables we reconstruct, the total population and manufacturing population

data are closest to the official CD-level census data, while the number of Blacks is the most different.

This makes sense if you consider where Blacks tend to live in the U.S. In regions like the Midwest and

Northeast, such as in states like Illinois, Michigan, and Maryland, Blacks tend to live disproportionately

in highly urban areas, relative to the overall population. As a result, both area- and overall population-

based crosswalks will tend to underestimate the number of Blacks living in highly urban CDs, allocating

some of those counts instead to adjacent CDs. Thus, it is important to keep in mind when harmonizing

10



Table 1: Correlation, root MSE, and root MAE between CD-level data and county-level data crosswalked
to the CD-level using areal- and population-weighting

Model Population Income Urban population

(σ = 379,399.9) (σ = 10,642.2) (σ = 311,054.5)

Corr. RMSE RMAE Corr. RMSE RMAE Corr. RMSE RMAE

M1 0.827 259,040.1 347.7 0.724 10,509.2 70.4 0.732 266,936.9 365.6

M2 0.961 110,015.7 235.3 0.910 5,019.8 52.6 0.926 122,646.4 266.7

M3 0.957 114,766.7 240.2 0.908 5,112.1 53.2 0.921 127,017.5 270.8

M4 0.961 109,053.6 231.9 0.913 4,937.3 52.2 0.928 121,398.3 263.5

M5 0.946 133,773.2 274.3 0.894 5,637.2 56.5 0.903 145,714.3 298.1

M6 0.978 83,491.9 186.2 0.931 4,399.6 47.5 0.959 93,615.3 223.1

Model Black population Manufacturing employment Voting population

(σ = 83,206.6) (σ = 46,539.5) (σ = 229,314.4)

Corr. RMSE RMAE Corr. RMSE RMAE Corr. RMSE RMAE

M1 0.624 68,357.9 175.1 0.856 28,001.3 110.8 0.785 180,758.4 294.9

M2 0.715 58,798.8 161.9 0.972 11,410.5 78.0 0.946 79,386.8 205.2

M3 0.704 59,888.9 163.2 0.969 11,992.5 79.4 0.942 82,445.3 209.1

M4 0.711 59,300.7 161.6 0.972 11,340.0 77.0 0.947 78,449.2 202.6

M5 0.696 62,006.3 171.9 0.957 14,557.7 89.1 0.929 94,659.7 234.9

M6 0.752 56,392.5 161.4 0.985 8,585.6 68.4 0.971 58,353.2 164.6

Note: This table compares harmonized CD-level data generated by our six crosswalk weights to official CD-level census data, as featured in
Lee et al. (2004), from the U.S. Census of Population and Housing of 1960, 1970, 1980, and 1990. We report correlations (as shown visually
in Figure 3) together with the root mean squared error (RMSE) and the root mean absolute error (MAE). We also report the standard deviation
(σ) of the underlying CD-level variable. See the notes to Figure 3 for other details.

data whether a particular variable is appropriate, given its spatial distribution relative to a county’s area

or overall population, as further discussed in Section 4.

On the other hand, this illustrates clear upsides to using our approach to harmonize county-level data

to the CD level. Official CD-level data as used in Lee et al. (2004) are only available for some decades

and, even then, only for one Congress per decade (at the beginning of a new census apportionment

period), despite CD boundaries often changing within states between censuses. They are also limited

to a relatively small set of variables, whereas spatial researchers often deal with novel county-level data

constructed from historical data not found in the census. In contrast, our approach is available for every

Congress year and its associated boundaries, and it works with any data that can be associated with a

U.S. county, at any point in time.

Lastly, we replicate the balance tests from Table 2 in Lee et al. (2004). As a baseline, we first

successfully replicate the balance tests using their official data and code. Estimates from their balance

tests for population size are shown in row 7 of our Table 2, together with those based on our six weighting

models. Among our models, estimates based on M4 and M6 are closest to the ground-truth ones, while

M1 and M5 are the furthest, mirroring their respective performances in Figure 3. We further replicate

the balance test for other variables considered by Lee et al. (2004); as in their paper, % urban and %

Black show slight but statistically significant discontinuities across multiple specifications. We report

these estimates in Tables A1–A5 in the Online Appendix. Overall, most observable characteristics show

11



Table 2: LMB’s Balance Tests Using Congressional District-Level Data Versus Harmonized CD Data
Constructed from County-Level Information

Difference in District Population Between Democrat and Republican Districts

(1) (2) (3) (4) (5) (6)

Total pop (M1) -92,262.9∗∗∗ -72,968.3∗∗∗ -23,473.9∗∗ -24,417.8∗ -34,212.2 -12,495.7

(12,117.1) (12,874.6) (11,741.6) (12,977.4) (22,510.6) (21,968.6)
Total pop (M2) -37,081.3∗∗∗ -18,546.0∗∗∗ -3,286.6 -3,727.6 -1,255.2 -336.5

(5,975.7) (5,935.8) (6,254.6) (7,972.6) (12,973.8) (13,872.5)
Total pop (M3) -38,286.8∗∗∗ -19,051.5∗∗∗ -3,706.1 -4,059.8 -1,240.9 13.9

(6,224.5) (6,156.6) (6,348.2) (8,065.7) (13,139.5) (14,200.1)
Total pop (M4) -32,030.1∗∗∗ -14,839.0∗∗ -2,192.7 -3,198.2 1,262.0 3,320.0

(5,950.8) (5,905.5) (5,958.1) (7,710.2) (12,850.0) (13,732.5)
Total pop (M5) -64,413.7∗∗∗ -47,177.6∗∗∗ -17,042.3∗∗ -13,148.8 -17,519.3 -4,635.7

(7,113.2) (7,351.6) (7,845.1) (9,414.8) (15,465.8) (15,524.0)
Total pop (M6) -20,360.6∗∗∗ -7,620.1∗ -2,138.8 -2,258.4 2,145.1 7,709.1

(4,137.0) (4,215.2) (5,507.0) (7,500.8) (13,164.5) (11,929.9)
Total pop (LMB) -1,817.6 3,019.9 4,961.5 3,211.1 8,640.6 2,008.0

(3,517.3) (3,723.4) (4,562.7) (5,524.2) (8,427.0) (9,258.1)

Bandwidth All +/− 25 +/− 10 +/− 5 +/− 2 Polynomial

Observations 13,231 10,065 4,086 2,030 794 13,211

Note: Each row features estimates from a different harmonization model, except for row (7), which uses data and code from Lee et al. (2004).
Observation counts reflect those in row (7). Column (1) features the entire sample. Columns (2) through (5) limit the sample by varying
bandwidths around the 50 percent mark. Column (6) includes a fourth order polynomial in Democratic vote share, which is interacted with the
above-below 50 percent dummy. The unit of observation is the district-congress. Standard errors are clustered by district-decade. Significance
levels are denoted by * p < 0.10, ** p < 0.05, *** p < 0.01.

few differences between Democratic and Republican CDs around the tied-election threshold. As such,

our estimation, based on data crosswalked to the CD-level from county-level data, replicates the original

balance tests in Lee et al. (2004).12

4 Discussion and Conclusion

We now turn to some discussion, beginning with a few notes on interpretation. First, we want to em-

phasize that data generated from crosswalks, ours or otherwise, are necessarily imperfect, relative to

ground-truth data. However, in the absence of ground-truth data for the unit of interest, researchers

must often rely on crosswalks from some other “origin” unit in order to approximate them. Currently,

researchers commonly use crosswalks based on areal interpolation. To the extent that the spatial dis-

tribution of origin data often varies with urban density, we argue that our population-based crosswalks

constitute an important improvement over these existing practices. Second, we are by no means claim-

ing that our population-based crosswalks are always preferred over other approaches. We now address

some limitations of our population-based crosswalks.

12It is worth noting that, since the publication of Lee et al. (2004), standard practice in applied RD research involves the use
of narrow “optimal” bandwidths with linear or quadratic vote share polynomials. Hence, estimates in columns 4 and 5 should
be preferred in this application.
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4.1 Limitations of Crosswalks

Error in harmonized data stems largely from the act of disaggregating the already-aggregated “origin”

data. Hence, if the researcher has access to ground-truth data or can sum aggregated data within larger

spatial units (e.g., backward in time for many U.S. counties) without the need for disaggregation, then

neither area- nor population-based crosswalks should generally be used. Indeed, while population-based

crosswalks generate less error than area-based crosswalks in many cases, they nonetheless entail nonzero

error to the extent that they imperfectly approximate the spatial distribution of the origin data.

When Should You Use an Area- Versus Population-Based Crosswalk? If data must be disaggregated

in the process of boundary harmonization, then our population-based crosswalks will be preferred to

widely-used area-based approaches whenever origin data are spatially correlated with urban density.

Conditional upon this, population-based crosswalks can nonetheless be expected to introduce error rela-

tive to ground-truth data as the absolute value of the spatial correlation between the stock data of interest

and the total population decreases. If stock data are instead distributed more uniformly, then an area-

based approach might in fact be preferred on those grounds.

If stock data are more unevenly distributed than the overall population, then a population-based

approach will be preferred over an area-based approach, but its output will nonetheless be inaccurate

relative to ground-truth data, as with the Black population in the exercise above. Note that if a variable

is negatively correlated with population (e.g., air quality), such variables can be transformed prior to

harmonization (e.g., into a measure of air pollution).

Which Population-Based Weights? FJ Versus LU. Suppose your data are indeed spatially correlated

with urban density. Absent ground-truth data, when is a population-based crosswalk based on the FJ-

based models (i.e., M2–M4) more appropriate, versus a crosswalk based on the LU-based approaches

(i.e., M5–M6)? As it turns out, both sets of weights offer distinct advantages and limitations, which

render each of them preferable under different circumstances.

When are M2–M4 more appropriate? It is important to keep in mind that, in constructing the pop-

ulation maps upon which M2–M4 are based, FJ rely on modeling assumptions which—despite being

based on empirical regularities in available data—may entail some error in harmonized data. Recall

that the areal extents of historical urban areas are estimated using the area-population power law scaling

relationship in equation (1), projected backward from estimates derived using data from 2000. Further

topographic suitability adjustments are made in the construction of M4, based on region-varying effects

of elevation on log population density in the available data. These assumptions are likely to produce

some error in the final maps and in turn our crosswalks. For a visual example of how these assump-

tions manifest spatially, see Appendix Figure A2. At the same time, the need for such assumptions,

like the need for crosswalks themselves, stems from the non-existence of these ground-truth data. If

these ground-truth data existed, one would not need crosswalks to begin with. Alternative methods for

estimating sub-county population distributions would entail similar limitations. For instance, Berkes

et al. (2023) place individuals within location centroids, but approximating areal extents beyond these

centroids would require similar assumptions. Moreover, alternative sub-county population distribution

data are available only for a subset of regions or census years. Spatial disaggregation using census tracts

would cover only the 20th century and would exclude many urban areas for most years, while the Census

Place Project ends in 1940. In contrast, FJ estimate population distributions for the conterminous U.S.

since 1790, offering time coverage that exceeds all alternatives.
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Table 3: Comparison of Different Crosswalk Weighting Models

Weighting scheme Factors accounted for in sub-county population distributions Data coverage

Model Area
Sub-county
population

Non-inhabitable
areas

Elevation
Historical property

records (binary)
Historical property

records (counts)
Grid cell

size
Decades

M1 ✓ 1790-2020

M2 ✓ 1×1 km 1790-2020

M3 ✓ ✓ 1×1 km 1790-2020

M4 ✓ ✓ ✓ 1×1 km 1790-2020

M5 ✓ ✓ ✓
0.25×0.25 km

(with gaps)
1810-2020

M6 ✓ ✓ ✓
0.25×0.25 km

(with gaps)
1810-2020

Note: This table provides an overview of the different models used in the construction of the spatial crosswalks introduced in this paper. M1
constructs crosswalks based on areal interpolation. M2–M6 are based on sub-county population estimates by Fang and Jawitz (2018) and Leyk
and Uhl (2018). M2 uses historical information on urban centers around which it extrapolates population distributions according to a power
distribution. M3 additionally excludes non-inhabitable areas, such as swamps, bodies of water, or legally protected areas (e.g., national and
state parks) in the population weights. M4 further accounts for the mean elevation when constructing the population-based weights. M5 bases
population distributions on historical property records using binary indicators per grid cell for any property built-up in a given period. M6
follows the same approach as M5 but uses the property counts as opposed to mere presence of properties. M5 and M6 only begin in 1810 due
to the lack of available property records before that time, with increasing gaps in the available data going further back in time.

In contrast, the LU approach used to construct M5–M6 forgoes modeling actual population distribu-

tions, instead relying on historical property records data to proxy granularly for population size and in

turn construct maps of historical urban settlements. For this, no strong assumptions need be made. For

analyses involving more modern spatial data, this offers a highly accurate alternative to ground-truth data

(see Figure 3). Yet this approach has its own drawbacks, too. The ZTRAX property database from which

the LU maps are constructed have gaps in the data and are increasingly unlikely to have property records

for a given county moving further back in time. This is a result of both (i) imperfect record-keeping,

especially in less developed regions, and (ii) increasingly sparsely-populated land shares, especially in

the Western U.S. The first factor is likely to generate significant measurement error in early decades,

especially for the count-based M6.13 For a visual example of how property records, including missing

data, may manifest cartographically, see Appendix Figure A3. Moreover, both of these factors reduce

the areal coverage of the LU-based crosswalks. To the extent that one cannot construct weights if there

are no property records within a given origin county, this means a larger share of origin counties cannot

be harmonized for earlier sample decades.14

Despite the caveats of each of these approaches to population-based harmonization, it is reassuring

that all of the population-based approaches outperform the area-based approach above in Figure 3, while

being quite similar to each other in terms of accuracy. At the same time, because of the advantages and

limitations of each approach (summarized in Table 3), insofar as population-based crosswalks are appro-
13In contrast, the binary coding used for M5 may safeguard somewhat against this.
14About 5% of weights are undefined for counties in 2010 versus about 25% in 1810 (and, of course, M5 and M6 are not

available for 1790 or 1800 at all). One option in cases with missing weights is to define missing weights as zeroes. This would
effectively give zero weight to data for all origin counties with too few individuals to have property records.
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priate given the factors of study, we recommend using M2–M4 for boundary harmonization involving

very early census periods and M6 for more recent ones. Furthermore, we ultimately recommend re-

porting estimates based on all six weighting models, particularly for earlier periods of study—with the

full range of estimates across these models being considered conditional upon the contextual particu-

lars, such as the place and factors of study. While any one weighting model has drawbacks on its own,

together they can provide a better understanding of the true estimate in settings where harmonization is

required, insofar as economic activity is unevenly distributed in space.

4.2 Concluding Remarks

A common problem for spatial researchers involves associating aggregate data from one set of bound-

aries to another, such as across county boundaries at different points in time or across different con-

temporaneous units. Existing approaches often use the relative area of overlap between different units

to generate and apply weights to stock data for origin units, for the purposes of disaggregating and re-

aggregating them to some reference unit. These approaches generally assume a uniform distribution of

factors within origin units. In this paper, we develop an alternative approach based on models of his-

torical population distribution by Fang and Jawitz (2018) and Leyk and Uhl (2018), with weights based

instead on relative population size. This mitigates issues present when economic activity is unevenly

distributed within counties.

We use these methods to produce a new set of crosswalks, which relax the uniformity assumption and

assign greater weight to areas with greater relative population size within counties. We construct area-

and population-based crosswalks for 1790 through 2020, mapping aggregate county-level data across

U.S. censuses as well as from counties to congressional districts, whose boundaries are correlated with

urban density. We crosscheck our weights using official census data for districts, as applied to the balance

tests in Lee et al. (2004). While all crosswalk-based data replicate their results, data constructed using

population-based weights consistently outperform area-based ones in terms of similarity to official data.

We hope these methods and crosswalks will be of value to spatial researchers across the social sciences,

for whom novel historical data often come pre-aggregated.
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1 Overview of Data

1.1 Data Used to Produce Crosswalks

Our crosswalks are based in part on the U.S. county shapefiles from https://www.nhgis.org/. For
the period 1790 to 2000, we use the shapefiles based on the 2000 TIGER/Line county boundary
definitions. For 2010 and 2020, these are not available. We therefore use contemporaneous
TIGER/Line shapefiles for those years instead. The shapefiles for 2010 and 2020 are sourced
from https://www.census.gov/.

Shapefiles for congressional districts (CD) are from Lewis, DeVine, Pritcher and Martis
(2021) for the 1st to 114th Congress, as available at https://cdmaps.polisci.ucla.edu/. The
shapefiles for CDs from the 115th and 116th Congress are obtained from https://catalog.data.g
ov/dataset/tiger-line-shapefile-2016-nation-u-s-115th-congressional-district-national.

Historical population distribution maps used to construct M2–M4 come from Fang and
Jawitz (2018). These are described in greater detail in the next section. We use U.S. Census
Bureau tract shapefiles and population data for 1960 to construct a population distribution raster
for that year, both from NHGIS, since Fang and Jawitz (2018) do not have urban population
data for that year.

Historical property records maps used to construct M5–M6 come are based on Leyk et al.
(2020) and available for download at Uhl and Leyk (2020a) and Uhl and Leyk (2020b). These
are described in greater detail in Section 3.

1.2 Data Used in Replication Exercise

For the replication of Lee et al. (2004) in the application section of the main paper, we use the
data and code to replicate Table 2 from Enrico Moretti’s website. The data can be accessed
via https://eml.berkeley.edu/~moretti/data3.html. Their replication files include the data
from the U.S. Census extracts for 1960-90. To reconstruct CD level from county-level census
data, we use data from the U.S. Census of Population and Housing for 1960 and 1970 from
Haines (2010), as well as with information from the County and City Data Books for the years
1962, 1967, 1972 1977, 1983, and 1994. This allows us to test the performance of different
crosswalks (area- versus population-based) when crosswalking the county-level data to the
CD-level, in comparison to the official CD-level data produced by the Census Bureau. Urban
population data for 1990 come from the 1990 U.S. Census, which is separately sourced from
NHGIS.

2 Overview of Spatial Models in Fang and Jawitz (2018)

2.1 Data

To estimate spatial models of population distribution for the conterminous U.S., Fang and
Jawitz (2018) use the following data:
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1. Total and urban (threshold 2,500+) population at the county level from the National His-
torical Geographic Information System (https://www.nhgis.org/) between 1790 and 2010
(excluding 1960, as these data are missing, and 2020, as these are not yet available),

2. Data on water bodies from the National Hydrography Dataset (http://nhd.usgs.gov/)
including lakes, ponds, marsh and swamp land, and other minor water bodies as of 2001,

3. Boundaries of protected areas from the National Gap Analysis Program (http://gapanaly
sis.usgs.gov/padus/) as of 2012,

4. Elevation data from the NASA Shuttle Radar Topography Mission Version 3.0 (http:
//www2.jpl.nasa.gov/srtm/) as of 2013,

for 7,754,146 square-kilometer grid cells in the conterminous United States. They caution
that protected areas were established in more recent times and that areas settled by American
Natives will undercount population as this group was only fully included in the U.S. censuses
from 1900 onward. An illustration of the spatial variation of their data for the year 2000 is
shown in Figure A2.

Defining the Spatial Extent of Urban Areas

Fang and Jawitz (2018) measure the areal extent of 3,610 urban areas using the 2000 U.S.
Census and project area backward in time using a power law relationship between an urban
area’s population and its spatial extent,

AU,φ = αδP
βδ

U,φ (1)

where AU,φ is the spatial extent of urban area and urban areas are indexed by φ in U.S. Census
Bureau division δ, αδ and βδ are the coefficients of the power function, which are assumed to
be constant over time,1 and PU,φ is the population size. Using the log-transformed version of
the model and historical population data from the census, they then estimate the historical area
size of the urban areas in their sample.

Defining Inhabitable Areas

Fang and Jawitz (2018) define inhabitable areas as those that are not water bodies larger than 1
square kilometer, protected areas, or areas with an elevation of more than 3,500 meters.

2.2 Models

Fang and Jawitz (2018) employ five spatial models of population distribution for the contermi-
nous U.S. The first model corresponds to county-level population distributions. This assumes a

1They motivate this assumption referencing other historical models of urbanization and urban extent in Eng-
land, China, Pre-Hispanic Mexico, and Japan.
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Figure A1: Geographic Distribution of Data Features Used by Fang and Jawitz (2018) for the
Year 2000

National Hydrography Dataset (http://nhd.usgs.gov/). Protected areas data (version 1.3), designated to
preserve biological diversity and other natural, recreation and cultural uses, were released in 2012 and
obtained from National Gap Analysis Program (http://gapanalysis.usgs.gov/padus/). Digital elevation
model data (Fig. 2) were released in 2013 and derived from NASA Shuttle Radar Topography Mission
Version 3.0 (http://www2.jpl.nasa.gov/srtm/), with a resolution of 90 m. Historical data on urban spatial
extents for San Francisco/Sacramento and Baltimore/Washington DC region36,37 were from the USGS
Land Cover Institute (LCI).

Level of spatial units
The above data were used to compute population for each inhabited pixel (k) in each decade (t) from
1790 to 2010 (excluding 1960). The data were variously applied over the following spatial units: urban
area (φ), census tract (c1), county subdivision (c2), county (i), census division (δ), and Region (μ). There
were 9 census divisions (δ: D1 – D9) and 7 Regions (μ: R1 – R7) with constant boundaries over time,
while the number of other spatial units varied with the expansion of human settlements and the
modification of administrative boundaries. For example, the number of counties increased from 292 in
1790 to 3109 in 2010. Also, in 2010, there were 7,754 146 pixels (1 km2), 72,271 census tracts, 35,532
county subdivisions, and 3,535 urban areas in the conterminous US.

Population count determination
Decennial census data on total population (PT) and aggregated urban population (PU) for each urban area
(φ) determined the remaining rural population (PR) by difference, for each county (i) from 1790 to 2010
(excluding 1960, for which digital urban population data are missing):

PR ¼ PT -
P

PU ;φ ð1Þ
The number of counties containing urban population increased from 19 in 1790 to 2424 in 2010. For
counties with more than one urban area, we obtained the population for individual urban areas from the
US Census Bureau. Note a population threshold of 2500 was used for identifying urban areas (https://
www.census.gov/geo/reference/ua/urban-rural-2010.html).

Areal extent delineation
The 2000 census includes full coverage of areal extent (AU) for all of the 3610 urban areas. However, areal
extents are incomplete for 1990 and largely unknown in prior decades. The 1990 NHGIS data cover only
396 large urban areas with population larger than 50,000. Thus, the 2000 data were used as a baseline for

Figure 1. The major spatial input data for the population downscaling models, and associated

administrative unit boundaries (census divisions D1 to D9, state, county, and urban areas). Un-inhabitable

areas include designated protected areas, waterbodies, and highlands with eleviation, z, larger than 3500 m.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180067 | DOI: 10.1038/sdata.2018.67 3

Note: Map showing variation in the main data sources used by Fang and Jawitz (2018) for the year 2000. D1-D9 refer to U.S. Census
Bureau divisions. Source: Figure 1 in (Fang and Jawitz, 2018, p. 3).

uniform population distribution within counties, with each one-by-one kilometer grid cells hav-
ing the same population value within a given county. The second model differentiates between
rural and urban areas, using the urban areal extents and urban population stock data described
above. Within a county, urban population is distributed uniformly within urban areas and the
remaining non-urban population is distributed uniformly within rural areas. The third model
also does this but first excludes non-inhabitable areas, as described above. The fourth model
extends the third by also multiplying the population raster by topographic suitability weights.
These four models correspond to our M1–M4, respectively. We do not discuss or utilize their
fifth model, which incorporates information from a constructed “socioeconomic desirability”
index. For most applications in the social sciences this allocation of population is problematic
as it is based on potentially endogenous variables, such as the distance from the periphery to
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the core of cities.2

Alternative Models for 1960

Because digital urban population data are missing for the 1960 U.S. Census, Fang and Jawitz
(2018) do not develop models for that year. In lieu of this, and in the interest of completeness,
we still construct crosswalks based on the area-based M1 for 1960, assuming a uniform popu-
lation distribution within counties. We also construct crosswalks based on an alternative M2,
in which we use the most granular population data possible: (i) population and boundary data
at the 1960 U.S. Census tract level, where available (coverage is most urban areas), and (ii)
population and boundary data at the 1960 county level otherwise. This is akin to adopting a
uniformity assumption within rural counties, i.e., where population distribution is likely to be
relatively homogeneous anyway. These population and boundary data are transformed into a
raster with square kilometer grid cells, to match the Fang and Jawitz (2018) M2 for other years.
In the crosswalk file, these weights take the places of M2–M4 for 1960.

Modeling Population Distribution for 2020

Given that Fang and Jawitz (2018) predates the 2020 U.S. Census, and urban or census-tract-
level population data are not yet available, we utilize urban population data from 2010 and the
corresponding models (M2–M4) from Fang and Jawitz (2018) in order to model population
distributions within counties for 2020 counties that are being harmonized to CDs or to other
counties.

3 Overview of Spatial Models in Leyk et al. (2020)

To construct maps of historical settlements for the conterminous U.S., Leyk et al. (2020)
use settlement layers from the Historical Settlement Data Compilation for the United States
(HISDAC-US), which is itself derived from historical property records found in the Zillow
Transaction and Assessment Database (ZTRAX). These settlement layers are granular, based
on 250 × 250 meter grid cells, and built for 5 year periods beginning in 1810. The database
includes a variety of measures:

• The historical “built-up areas” measure (BUA) defines for each grid cell the presence of
at least one built-up structure in a given year (built-up= 1).

• The historical “built-up property records” measure (BUPR) defines for each grid cell the
number of built-up property records in a given year.

• The historical “built-up property locations” measure (BUPL) defines for each grid cell the
number of unique locations of built-up property records in a given year (i.e., independent
of ownership). This is highly correlated with the BUPR measure.

2Unlike geographic and topographic features, distance based on a gravity model is also likely to change the
most over time due to changes in available transportation methods.
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• The “first built-up year” measure (FBUY) defines for each grid cell the earliest construc-
tion year on record.

The first two measures are used to construct and thus correspond to our models M5 and M6,
respectively, for all census years 1810 through 2020. As with M1–M4, we use the 2010 map to
construct our models for 2020.

Built-up property records are importantly highly correlated with population size, as the
authors show in Leyk et al. (2020). Comparisons with county-level population data for 1860–
2010 in their Table 1 show that a one unit increase in built-up property records within a county
is associated on average with 2.68 (0.01) additional residents, with these records accounting for
nearly 93% of the variation in total population size over time across sample counties. On that
basis, property records provide an accurate and granular proxy for historical population counts.

Figures A2 and A3 provide different visualizations of the weights to construct our cross-
walks in our example of Minnesota. Figure A2 shows the population-based weights for the
M2 (panels a and b) and M4 (panels c and d) models in 1900 and 2000, respectively. Figure
A3 maps the spatial extent of built-up areas (panels a and b) and the built-up property records
(panels c and d) for the same state and time periods.
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Figure A2: Examples of M2 and M4 from Fang and Jawitz (2018), Used to Construct Our M2
and M4 Weights

(a) M2, Minnesota, 1900 (b) M2, Minnesota, 2000

(c) M4, Minnesota, 1900 (d) M4, Minnesota, 2000

Note: This figure shows the land area of the state of Minnesota with built-up distribution information for 1900 and 2000, where darker
orange a greater number of residents per square kilometer for M2 and M4 (used to construct our weights of the same names). The gray
boundaries show the state’s county boundaries as of the 2010 U.S. Census. County shapefiles are from Manson, Schroeder, Van Riper,
Kugler and Ruggles (2020). Population distribution estimates for 1900 and 2000 are from Fang and Jawitz (2018).
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Figure A3: Examples of Built-Up Areas (BUA) and Built-Up Property Records (BUPR) from
Leyk et al. (2020), Used to Construct Our M5 and M6 Weights

(a) BUA, Minnesota, 1900 (b) BUA, Minnesota, 2000

(c) BUPR, Minnesota, 1900 (d) BUPR, Minnesota, 2000

Note: This figure shows the land area of the state of Minnesota with built-up distribution information for 1900 and 2000, where darker
orange implies at least one build-up property within the grid cell by the year for BUA (used to construct our M5), or a greater number of
individual built-up property record by the year for BUPR (used to construct our M6). County shapefiles are from Manson et al. (2020).
Built-up property distribution information for 1900 and 2000 are from Leyk et al. (2020).
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4 Construction of the Geographic Crosswalks

This paper makes a number of contributions to the study of spatial phenomena in the social
sciences, with a wide range of applications for urban economists, political scientists, and eco-
nomic historians, among others. Most notably, we extend existing area-based approaches to
harmonizing county boundaries across U.S. censuses over time, by relaxing standard unifor-
mity assumptions regarding population distribution within counties for the contiguous U.S.
(i.e., excluding Alaska and Hawaii). To do this, we rely on maps based on historical population
estimates for 1 × 1 kilometer grid cells from Fang and Jawitz (2018) (for M2–M4) and maps
based on historical property records for 250× 250 meter grid cells from Leyk et al. (2020) (for
M5–M6). These capture sub-county variation in the population distribution for counties being
harmonized, to the extent that more or less of its population may be located in some “parts”
relative to others. Given that harmonization frequently involves spatial disaggregation of coun-
ties prior to the re-aggregation to the boundaries of some “reference” unit, this better ensures
that initial county stock variables will be properly weighted in the disaggregation process prior
to being re-aggregated to different reference county boundaries.

We then apply this innovation in order to construct wholly original county-to-congressional
district (CD) crosswalks, spanning the entirety of U.S. congressional history, from 1790 to
2020. These crosswalks can be used to aggregate county-level data to the CD-level. Because
CD boundaries often do not align with county boundaries, county data must often be spatially
disaggregated before being re-aggregated to the CD level. This renders the models of historical
sub-county population distribution from Fang and Jawitz (2018) and Leyk et al. (2020) quite
important.

We now describe this process of disaggregation and re-aggregation, used to generate our
county-to-county and county-to-CD crosswalks, beginning with the area-based crosswalks used
previously in the literature.

4.1 Area-based Crosswalks

Area-based harmonization procedures entail a simple process of spatial disaggregation and re-
aggregation. To construct our county-to-CD crosswalks, this involves intersecting a county
map from a particular census year with a CD map from a particular Congress year. Counties
are then disaggregated into a set of sub-county units (“county-parts”), based the CD in which
they are located. We then calculate the areas (in square meters) of all counties, all CDs, and
all county-parts, based on a “USA Contiguous Albers Equal Area Conic” projection. Once
counties are disaggregated based on CD intersections, county-parts are re-aggregated based
on their CD, with the sum of the areas of the county-parts matching the area of the whole
CD. This is the same process outlined in Eckert, Gvirtz, Liang and Peters (2020) and used to
construct the county-to-county crosswalks featured in Hornbeck (2010) and Bazzi, Fiszbein
and Gebresilasse (2020), among others.
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How are the various data values of the initial counties (e.g., total population, total number
of Blacks) associated with CDs in this process? Under an area-based procedure, each county-
part is assigned each of its county’s data values, weighted by the share of the county’s total
area that belongs to that county-part. These weights add up to 1 for each county. A given CD’s
data values are in turn the aggregates of these weighted values, summed across all counties that
have a county-part located in that CD. For our area-based weights to be appropriate in settings
where county and CD boundaries overlap, the following condition and proposition are relevant:

Proposition 1. Suppose all counties satisfy:

Assumption (Uniformity). Let C be any continuous, two-dimensional county with area c > 0

and a vector of positive and finite values P = (p1, p2, ..., pn). Let A be any continuous, two-

dimensional subset of C with area ac ∈ (0, c) and a vector of positive and finite values R =

(r1, r2, ..., rn). C satisfies uniformity in population distribution if R = aP for all A ⊂ C.

Then our area-based crosswalk will accurately map county-level values to the congressional

district level for all districts.

Proof. Let D be any continuous, two-dimensional congressional district with area d > 0 and
a vector of positive and finite values Q = (q1, q2, ..., qn). Suppose D can be decomposed into
1 county-part each from M counties j = 1, ...,m, each with finite area ajcj and a vector of
positive and finite values Rj = (rj1, rj2, ..., rjn), such that:

M∑
j=1

ajcj = d,

M∑
j=1

Rj = Q,

where aj is the share of county j’s area belonging to its county-part that lies in D. As such,
(a1, a2, ..., am) is the vector of weights associated with our area-based crosswalk, which map
values from counties j = 1, ...,m to D.

Yet suppose in actuality that our area-based crosswalk does not accurately map county-level
values to D, such that:

Q ̸=
M∑
j=1

ajPj,

where Pj is the vector of positive and finite values associated with county j. It follows that
ajPj ̸= Rj for at least one county j, a violation of uniformity.

9



4.2 Population-based Crosswalks

We then construct population-based crosswalks, which rely on a relaxation of the uniformity
assumption. To do this, we use information on historical sub-county population distribution
by Fang and Jawitz (2018) and Leyk et al. (2020). The former provide historical population
counts for 1 × 1 kilometer grid cells, which we use to construct a set of population-based
weights. These include: (i) model 2 (M2), which is based on a division of counties into urban
and rural areas, with urban population counts being distributed around city centers according to
a power law scaling relationship; (ii) model 3 (M3), which is is based on a version of M2 that
first excludes non-inhabitable areas, such as bodies of water; and (iii) model 4 (M4), which is
based on a version of M3 that also weights population counts based on topographic suitability.
In contrast, Leyk et al. (2020) derive proxies for historical population size for 250× 250 meter
grid cells based on historical property records data, which they show to be highly correlated
with local population size. We use these to construct two further models: (i) model 5 (M5),
which is based on their binary measure of “built-up area,” which assigns a value of 1 to a grid
cell if it contains at least one built-up property record in a given year, and (ii) model 6 (M6),
which is based on the “built-up property” counts themselves, summing the number of records
(e.g., building units) within the grid cell in a given year. We describe these data and models in
detail above.

To relax the uniformity assumption, we no longer base the disaggregation of county-level
data on relative area but rather relative population size. These various population distribution
raster maps let us calculate the total population counts (or property-based proxy) of each county
polygon for each census year, as well as approximate counts for each county-part polygon
within a county that lies in a different CD. As with our area-based crosswalk, the ratio of these
counts in the county-part relative to the entire “origin” county provides a weight with which to
multiply a county’s stock data prior to its aggregation to the CD level.

4.3 Using ArcMap and Stata to Construct Crosswalks

Although our crosswalks currently cover the entirety of U.S. congressional history and of the
U.S. censuses, time will render them incomplete. We are therefore describing the data and
steps taken to (i) generate necessary spatial data and (ii) construct crosswalk weights for a
given county-CD pair. In Section 5, we will discuss step-by-step how to apply these weights
and harmonize county boundaries to those of a contemporaneous CD. For further illustration,
we also include relevant samples of Stata and R code in Section 5.

4.3.1 Guide for Generating Spatial GIS Data

We use ArcMap to generate the necessary spatial information for crosswalks, based on the data
sources described in the first part of this Online Appendix. This process goes as follows for
each county-CD crosswalk:

We first calculate the area (in square meters) of each county polygon within each county
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shapefile. Working within a NAD 1983 data frame, all area calculations are based on a “USA
Contiguous Albers Equal Area Conic” projection. We then intersect the county shapefile with a
given CD polygon shapefile, using the “intersect” tool. The output table from this intersection
provides the full set of county-parts for each county.

For area-based crosswalks, we calculate the area (in square meters) of each county-part.
For population-based crosswalks, we use the “zonal statistics table” tool to calculate the sum
of population (or property-based proxy) counts within each county-part, based on the raster
grid cells for a given model M2–M6 in a given census year. These produce five separate tables,
one each for M2–M6, with the same county-part identifiers used in the intersection output table.
We then export all six tables to CSV.

In Stata, we import each CSV separately. We then use the identifiers for the county-parts
from ArcMap to merge the M2, M3, M4, M5, M6 and intersection output tables. Total popula-
tion (or property-based proxy) counts for each county for M2–M6 are calculated by summing
said counts of all county-parts within each given county.

To generate weights for area-based crosswalks, we calculate the ratio of county-part-to-
origin-county area for each county-part. To generate weights for each population-based cross-
walks, population (or property-based proxy) counts are divided by the total counts for the ori-
gin county for each population-based model. Miscellaneous minor edits are made to make sure
county and CD identifiers are consistent across crosswalk years and to fix a few errors relating
to duplicate county-parts (e.g., in the case of pre-1960s CDs in states with both at-large and
within-state CDs overlapping each other).

5 Step-by-step Guide for Applying the Crosswalks in Stata and R

Below we provide a simple example using Stata and R to show step-by-step how to crosswalk
county level aggregates to congressional district boundaries. Here we wish to crosswalk total
population and Black population (in levels) from 1960 to the boundaries of the 88th Congress.

First, take total population and Black population at the county level and prepare the data for
merging with the crosswalk file.

. use state county level statefip counfip var3 using "1962_cnty_and_city_data_book.dta"

(Historical, Demographic, Economic, and Social Data: The United States, 1790-2002)

.

. gen census = 1960

.

. * merge with county level data on Black population

. merge 1:1 state county using "1960_census_county.dta", keepusing(negmtot negftot)

Result # of obs.

not matched 2

from master 2 (_merge==1)

from using 0 (_merge==2)

matched 3,183 (_merge==3)
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. drop _merge

.

. * keep counties only (level 1) and drop D.C. (no congressional representation)

. keep if level==1 & state!=98

(53 observations deleted)

.

. * generate the variables of interest in levels

. gen black = negmtot + negftot

. gen totpop = var3

.

. * keep only relevant variables for the cross walk

. keep state county census black totpop

.

. * rename county identifiers for merging with the crosswalk

. ren (state county) (icpsrst icpsrcty)

Second, use the county and state identifiers to merge the crosswalk file to the data in a 1:m
merge. This expands the set of counties to the full set of county-parts belonging to each con-
gressional district intersecting a given county.

. * Merge with crosswalks

. merge 1:m icpsrst icpsrcty using "Crosswalk_1960_88.dta"

Result # of obs.

not matched 2

from master 1 (_merge==1)

from using 1 (_merge==2)

matched 7,368 (_merge==3)

. drop _merge

Third, multiply each stock variable with the relevant weights, using the weights from all six
models and keeping track of county-parts with missing data or undefined weights.

. * Weight county count data by weights

. qui ds black totpop

. foreach v in `r(varlist)´ {

. * If any one "county part" has a missing value, may want to mark the whole of the

. * aggregated district to have a missing value as well, especially if that county

. * part makes up a sizable part of the district

1. replace `v´ = -999999999999999 if(`v´==.) & cnty_part_area/cd_area>0.05

. *Apply weights (for all 4 models)

2. gen `v´_m1 = `v´*m1_weight

3. gen `v´_m2 = `v´*m2_weight

4. gen `v´_m3 = `v´*m3_weight

5. gen `v´_m4 = `v´*m4_weight

6. gen `v´_m5 = `v´*m5_weight

7. gen `v´_m6 = `v´*m6_weight

. }

(0 real changes made)

(2 missing values generated)

(36 missing values generated)
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(36 missing values generated)

(36 missing values generated)

(642 missing values generated)

(642 missing values generated)

(0 real changes made)

(2 missing values generated)

(36 missing values generated)

(36 missing values generated)

(36 missing values generated)

(642 missing values generated)

(642 missing values generated)

.

. qui ds black* totpop*

. foreach v in `r(varlist)´ {

. * If any one "county part" has a missing value due to a missing weight,

. * may want to mark the whole of the aggregated district to have a missing

. * value as well

. replace `v´ = -999999999999999 if(`v´==.) & cnty_part_area/cd_area>0.05

. }

(0 real changes made)

(1 real change made)

(12 real changes made)

(12 real changes made)

(12 real changes made)

(167 real changes made)

(167 real changes made)

(0 real changes made)

(1 real change made)

(12 real changes made)

(12 real changes made)

(12 real changes made)

(167 real changes made)

(167 real changes made)

Fourth, collapse the weighted data on the CD identifier. The unit of observation is now the
congressional district.

. * Collapse by congressional district

. collapse (sum) black_m* totpop_m*, by(census congress cd_state cd_statefip ///

> cd_stateicp district id cd_area)

.

. * Correct districts with missing "county parts" and otherwise round to nearest integer

. qui ds black_m* totpop_m*

. foreach v in `r(varlist)´ {

2.

. replace `v´ = . if(`v´<=0)

3. replace `v´ = round(`v´)

4.

. }

(1 real change made, 1 to missing)

(387 real changes made)

(3 real changes made, 3 to missing)

(160 real changes made)

(3 real changes made, 3 to missing)

(160 real changes made)

(3 real changes made, 3 to missing)

(160 real changes made)

(3 real changes made, 3 to missing)

(150 real changes made)
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(3 real changes made, 3 to missing)

(150 real changes made)

(1 real change made, 1 to missing)

(383 real changes made)

(3 real changes made, 3 to missing)

(159 real changes made)

(3 real changes made, 3 to missing)

(159 real changes made)

(3 real changes made, 3 to missing)

(159 real changes made)

(3 real changes made, 3 to missing)

(150 real changes made)

(3 real changes made, 3 to missing)

(144 real changes made)

The final step also rounds the relevant variables or replaces them as missing in cells where this
is appropriate.

The following R code below reproduces the example. The logic should carry over to other
statistical packages and programming languages.

# load relevant libraries

library(haven)

library(dplyr)

# load the required data sets and crosswalks

census_county_1960 <- read_dta(’./Data/LMB/County/1960_census_county

.dta’)

cnty_city_data_book_1962 <- read_dta(’./Data/LMB/County/1962_cnty_

and_city_data_book.dta’)

crosswalk <- read_dta(’./Data/Final Crosswalks/Stata/DOA/Crosswalk_

1960_88.dta’)

# Step 1: set up the data frame, generate relevant variables

# keep only counties (level = 1)

df <- cnty_city_data_book_1962 %>%

mutate(census = 1960) %>%

full_join(census_county_1960) %>%

filter(level == 1 & state != 98) %>%

mutate(black = negmtot + negftot, totpop = var3) %>%

select(state, county, census, black, totpop) %>%

rename(icpsrst = state, icpsrcty = county)

# Step 2: merge the crosswalk file to the data

df <- df %>%

full_join(crosswalk, relationship = "one-to-many")
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# Step 3: multiply stock variables with the relevant weights

# do this using the weights from the six different models

df <- df %>%

mutate(black = replace(black, is.na(black) & cnty_part_area/cd_area

> 0.05, -999999999999999),

totpop = replace(totpop, is.na(totpop) & cnty_part_area/cd_area >

0.05, -999999999999999)) %>%

mutate(black_m1 = black*m1_weight,

black_m2 = black*m2_weight,

black_m3 = black*m3_weight,

black_m4 = black*m4_weight,

black_m5 = black*m5_weight,

black_m6 = black*m6_weight,

totpop_m1 = totpop*m1_weight,

totpop_m2 = totpop*m2_weight,

totpop_m3 = totpop*m3_weight,

totpop_m4 = totpop*m4_weight,

totpop_m5 = totpop*m5_weight,

totpop_m6 = totpop*m6_weight) %>%

mutate(black_m1 = replace(black_m1, is.na(black_m1) & cnty_part_area

/cd_area > 0.05, -999999999999999),

black_m2 = replace(black_m2, is.na(black_m2) & cnty_part_area/cd_

area > 0.05, -999999999999999),

black_m3 = replace(black_m3, is.na(black_m3) & cnty_part_area/cd_

area > 0.05, -999999999999999),

black_m4 = replace(black_m4, is.na(black_m4) & cnty_part_area/cd_

area > 0.05, -999999999999999),

black_m5 = replace(black_m5, is.na(black_m5) & cnty_part_area/cd_

area > 0.05, -999999999999999),

black_m6 = replace(black_m6, is.na(black_m6) & cnty_part_area/cd_

area > 0.05, -999999999999999),

totpop_m1 = replace(totpop_m1, is.na(totpop_m1) & cnty_part_area/cd_

area > 0.05, -999999999999999),

totpop_m2 = replace(totpop_m2, is.na(totpop_m2) & cnty_part_area/cd_

area > 0.05, -999999999999999),

totpop_m3 = replace(totpop_m3, is.na(totpop_m3) & cnty_part_area/cd_

area > 0.05, -999999999999999),

totpop_m4 = replace(totpop_m4, is.na(totpop_m4) & cnty_part_area/cd_
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area > 0.05, -999999999999999),

totpop_m5 = replace(totpop_m5, is.na(totpop_m5) & cnty_part_area/cd_

area > 0.05, -999999999999999),

totpop_m6 = replace(totpop_m6, is.na(totpop_m6) & cnty_part_area/cd_

area > 0.05, -999999999999999))

# Step 4: collapse the weighted data on the CD identifier.

# The unit of observation is now the congressional district.

df <- df %>%

group_by(census, congress, cd_state, cd_statefip, cd_stateicp,

district, id, cd_area) %>%

summarise(black_m1 = sum(black_m1, na.rm = T),

black_m2 = sum(black_m2, na.rm = T),

black_m3 = sum(black_m3, na.rm = T),

black_m4 = sum(black_m4, na.rm = T),

black_m5 = sum(black_m5, na.rm = T),

black_m6 = sum(black_m6, na.rm = T),

totpop_m1 = sum(totpop_m1, na.rm = T),

totpop_m2 = sum(totpop_m2, na.rm = T),

totpop_m3 = sum(totpop_m3, na.rm = T),

totpop_m4 = sum(totpop_m4, na.rm = T),

totpop_m5 = sum(totpop_m5, na.rm = T),

totpop_m6 = sum(totpop_m6, na.rm = T)) %>%

ungroup() %>%

mutate(black_m1 = ifelse(black_m1 <= 0, NA, round(black_m1)),

black_m2 = ifelse(black_m2 <= 0, NA, round(black_m2)),

black_m3 = ifelse(black_m3 <= 0, NA, round(black_m3)),

black_m4 = ifelse(black_m4 <= 0, NA, round(black_m4)),

black_m5 = ifelse(black_m5 <= 0, NA, round(black_m5)),

black_m6 = ifelse(black_m6 <= 0, NA, round(black_m6)),

totpop_m1 = ifelse(totpop_m1 <= 0, NA, round(totpop_m1)),

totpop_m2 = ifelse(totpop_m2 <= 0, NA, round(totpop_m2)),

totpop_m3 = ifelse(totpop_m3 <= 0, NA, round(totpop_m3)),

totpop_m4 = ifelse(totpop_m4 <= 0, NA, round(totpop_m4)),

totpop_m5 = ifelse(totpop_m5 <= 0, NA, round(totpop_m5)),

totpop_m6 = ifelse(totpop_m6 <= 0, NA, round(totpop_m6)))
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6 Tables from the Replication of Lee et al. (2004)

Table A1: LMB’s Balance Tests Using Extract Data Versus Our Harmonized Data

Difference in District Population Between Democrat and Republican Districts

(1) (2) (3) (4) (5) (6)

Total pop (M1) -92,262.9∗∗∗ -72,968.3∗∗∗ -23,473.9∗∗ -24,417.8∗ -34,212.2 -12,495.7
(12,117.1) (12,874.6) (11,741.6) (12,977.4) (22,510.6) (21,968.6)

Total pop (M2) -37,081.3∗∗∗ -18,546.0∗∗∗ -3,286.6 -3,727.6 -1,255.2 -336.5
(5,975.7) (5,935.8) (6,254.6) (7,972.6) (12,973.8) (13,872.5)

Total pop (M3) -38,286.8∗∗∗ -19,051.5∗∗∗ -3,706.1 -4,059.8 -1,240.9 13.9
(6,224.5) (6,156.6) (6,348.2) (8,065.7) (13,139.5) (14,200.1)

Total pop (M4) -32,030.1∗∗∗ -14,839.0∗∗ -2,192.7 -3,198.2 1,262.0 3,320.0
(5,950.8) (5,905.5) (5,958.1) (7,710.2) (12,850.0) (13,732.5)

Total pop (M5) -64,413.7∗∗∗ -47,177.6∗∗∗ -17,042.3∗∗ -13,148.8 -17,519.3 -4,635.7
(7,113.2) (7,351.6) (7,845.1) (9,414.8) (15,465.8) (15,524.0)

Total pop (M6) -20,360.6∗∗∗ -7,620.1∗ -2,138.8 -2,258.4 2,145.1 7,709.1
(4,137.0) (4,215.2) (5,507.0) (7,500.8) (13,164.5) (11,929.9)

Total pop (LMB) -1,817.6 3,019.9 4,961.5 3,211.1 8,640.6 2,008.0
(3,517.3) (3,723.4) (4,562.7) (5,524.2) (8,427.0) (9,258.1)

Bandwidth All +/− 25 +/− 10 +/− 5 +/− 2 Polynomial

Observations 13,231 10,065 4,086 2,030 794 13,211

Note: Each row features estimates from a different harmonization model, except for row (7), which uses data and code from Lee et al. (2004).
Observation counts reflect those in row (7). Column (1) features the entire sample. Columns (2) through (5) limit the sample by varying
bandwidths around the 50 percent mark. Column (6) includes a fourth order polynomial in Democratic vote share, which is interacted with the
above-below 50 percent dummy. The unit of observation is the district-congress. Standard errors are clustered by district-decade. Significance
levels are denoted by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A2: LMB’s Balance Tests Using Extract Data Versus Our Harmonized Data (I)

Difference in District Income Between Democrat and Republican Districts

(1) (2) (3) (4) (5) (6)

Log income (M1) -0.039∗∗∗ -0.002 0.026∗ 0.033∗ 0.027 0.007
(0.013) (0.013) (0.015) (0.018) (0.026) (0.028)

Log income (M2) -0.038∗∗∗ -0.001 0.026∗ 0.033∗ 0.027 0.008
(0.013) (0.013) (0.014) (0.018) (0.026) (0.028)

Log income (M3) -0.039∗∗∗ -0.001 0.026∗ 0.033∗ 0.027 0.008
(0.013) (0.013) (0.015) (0.018) (0.026) (0.028)

Log income (M4) -0.039∗∗∗ -0.001 0.026∗ 0.033∗ 0.026 0.008
(0.013) (0.013) (0.015) (0.018) (0.026) (0.028)

Log income (M5) -0.039∗∗∗ -0.006 0.026∗ 0.037∗ 0.018 0.023
(0.014) (0.013) (0.015) (0.019) (0.027) (0.029)

Log income (M6) -0.038∗∗∗ -0.005 0.026∗ 0.038∗∗ 0.019 0.024
(0.014) (0.013) (0.015) (0.019) (0.027) (0.029)

Log income (LMB) -0.087∗∗∗ -0.037∗∗∗ 0.014 0.027 0.031 0.053∗

(0.013) (0.013) (0.014) (0.018) (0.026) (0.029)
Bandwidth All +/− 25 +/− 10 +/− 5 +/− 2 Polynomial

Observations 13413 10229 4174 2072 810 13393

Note: Each row features estimates from a different harmonization model, except for row (7), which uses data and code from Lee et al. (2004).
Observation counts reflect those in row (7). Standard errors are in parenthesis. The unit of observation is the district-congress. Column (1)
features the entire sample. Columns (2) through (5) limit the sample by varying bandwidths around the 50 percent mark. Column (6) includes
a fourth order polynomial in Democratic vote share, which is interacted with the above-below 50 percent dummy. Standard errors are clustered
by district-decade. Significance levels are denoted by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A3: LMB’s Balance Tests Using Extract Data Versus Our Harmonized Data (II)

Difference in District Urban Pop. Between Democrat and Republican Districts

(1) (2) (3) (4) (5) (6)

% Urban (M1) 0.050∗∗∗ 0.052∗∗∗ 0.045∗∗∗ 0.045∗∗∗ 0.055∗∗∗ 0.042∗

(0.011) (0.011) (0.012) (0.014) (0.021) (0.022)

% Urban (M2) 0.052∗∗∗ 0.054∗∗∗ 0.045∗∗∗ 0.045∗∗∗ 0.055∗∗∗ 0.043∗

(0.011) (0.011) (0.012) (0.014) (0.021) (0.023)

% Urban (M3) 0.051∗∗∗ 0.053∗∗∗ 0.045∗∗∗ 0.045∗∗∗ 0.055∗∗∗ 0.042∗

(0.011) (0.011) (0.012) (0.014) (0.021) (0.023)

% Urban (M4) 0.052∗∗∗ 0.054∗∗∗ 0.045∗∗∗ 0.045∗∗∗ 0.055∗∗∗ 0.043∗

(0.011) (0.011) (0.012) (0.014) (0.021) (0.023)

% Urban (M5) 0.048∗∗∗ 0.047∗∗∗ 0.037∗∗∗ 0.039∗∗∗ 0.046∗∗ 0.042∗

(0.011) (0.011) (0.012) (0.014) (0.021) (0.023)

% Urban (M6) 0.050∗∗∗ 0.049∗∗∗ 0.038∗∗∗ 0.041∗∗∗ 0.046∗∗ 0.044∗

(0.011) (0.011) (0.012) (0.014) (0.021) (0.023)

% Urban (LMB) 0.070∗∗∗ 0.066∗∗∗ 0.054∗∗∗ 0.054∗∗∗ 0.056∗∗ 0.053∗∗

(0.011) (0.011) (0.013) (0.015) (0.023) (0.025)
Bandwidth All +/− 25 +/− 10 +/− 5 +/− 2 Polynomial

Observations 13413 10229 4174 2072 810 13393

Note: Each row features estimates from a different harmonization model, except for row (7), which uses data and code from Lee et al. (2004).
Observation counts reflect those in row (7). Standard errors are in parenthesis. The unit of observation is the district-congress. Column (1)
features the entire sample. Columns (2) through (5) limit the sample by varying bandwidths around the 50 percent mark. Column (6) includes
a fourth order polynomial in Democratic vote share, which is interacted with the above-below 50 percent dummy. Standard errors are clustered
by district-decade. Significance levels are denoted by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A4: LMB’s Balance Tests Using Extract Data Versus Our Harmonized Data (III)

Difference in District Blacks Between Democrat and Republican Districts

(1) (2) (3) (4) (5) (6)

% Black (M1) 0.061∗∗∗ 0.037∗∗∗ 0.013∗∗∗ 0.007 -0.001 -0.006
(0.005) (0.004) (0.005) (0.006) (0.009) (0.010)

% Black (M2) 0.062∗∗∗ 0.037∗∗∗ 0.013∗∗∗ 0.007 -0.001 -0.005
(0.005) (0.004) (0.005) (0.006) (0.009) (0.010)

% Black (M3) 0.062∗∗∗ 0.037∗∗∗ 0.013∗∗∗ 0.007 -0.001 -0.006
(0.005) (0.004) (0.005) (0.006) (0.009) (0.010)

% Black (M4) 0.062∗∗∗ 0.038∗∗∗ 0.013∗∗∗ 0.007 -0.001 -0.006
(0.005) (0.004) (0.005) (0.006) (0.009) (0.010)

% Black (M5) 0.056∗∗∗ 0.033∗∗∗ 0.007 0.001 -0.006 -0.012
(0.005) (0.005) (0.005) (0.006) (0.010) (0.011)

% Black (M6) 0.057∗∗∗ 0.034∗∗∗ 0.008 0.001 -0.005 -0.012
(0.005) (0.004) (0.005) (0.006) (0.010) (0.011)

% Black (LMB) 0.083∗∗∗ 0.043∗∗∗ 0.014∗∗∗ 0.003 -0.003 -0.053∗∗∗

(0.006) (0.005) (0.005) (0.006) (0.009) (0.012)
Bandwidth All +/− 25 +/− 10 +/− 5 +/− 2 Polynomial

Observations 13413 10229 4174 2072 810 13393

Note: Each row features estimates from a different harmonization model, except for row (7), which uses data and code from Lee et al. (2004).
Observation counts reflect those in row (7). Standard errors are in parenthesis. The unit of observation is the district-congress. Column (1)
features the entire sample. Columns (2) through (5) limit the sample by varying bandwidths around the 50 percent mark. Column (6) includes
a fourth order polynomial in Democratic vote share, which is interacted with the above-below 50 percent dummy. Standard errors are clustered
by district-decade. Significance levels are denoted by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A5: LMB’s Balance Tests Using Extract Data Versus Our Harmonized Data (IV)

Difference in District Manufacturing Between Democrat and Republican Districts

(1) (2) (3) (4) (5) (6)

% Manufacturing (M1) -0.003 -0.000 0.004∗ 0.005∗ 0.004 0.002
(0.002) (0.002) (0.002) (0.003) (0.004) (0.004)

% Manufacturing (M2) -0.002 0.000 0.004∗ 0.005∗ 0.004 0.002
(0.002) (0.002) (0.002) (0.003) (0.004) (0.004)

% Manufacturing (M3) -0.002 0.000 0.004∗ 0.005∗ 0.004 0.002
(0.002) (0.002) (0.002) (0.003) (0.004) (0.004)

% Manufacturing (M4) -0.002 0.000 0.004∗ 0.005∗ 0.004 0.002
(0.002) (0.002) (0.002) (0.003) (0.004) (0.004)

% Manufacturing (M5) -0.002 -0.001 0.003 0.005 0.002 0.001
(0.002) (0.002) (0.002) (0.003) (0.004) (0.004)

% Manufacturing (M6) -0.002 -0.000 0.003 0.005∗ 0.002 0.001
(0.002) (0.002) (0.002) (0.003) (0.004) (0.004)

% Manufacturing (LMB) -0.002 0.000 0.004∗ 0.005∗ 0.004 0.003
(0.002) (0.002) (0.002) (0.003) (0.004) (0.004)

Bandwidth All +/− 25 +/− 10 +/− 5 +/− 2 Polynomial

Observations 13413 10229 4174 2072 810 13393

Note: Each row features estimates from a different harmonization model, except for row (7), which uses data and code from Lee et al. (2004).
Observation counts reflect those in row (7). Standard errors are in parenthesis. The unit of observation is the district-congress. Column (1)
features the entire sample. Columns (2) through (5) limit the sample by varying bandwidths around the 50 percent mark. Column (6) includes
a fourth order polynomial in Democratic vote share, which is interacted with the above-below 50 percent dummy. Standard errors are clustered
by district-decade. Significance levels are denoted by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A6: LMB’s Balance Tests Using Extract Data Versus Our Harmonized Data (V)

Difference in District Voters Between Democrat and Republican Districts

(1) (2) (3) (4) (5) (6)

% Eligible to vote (M1) 0.004 0.008∗∗∗ 0.007∗∗ 0.006 -0.006 -0.013∗

(0.003) (0.003) (0.003) (0.004) (0.006) (0.007)

% Eligible to vote (M2) 0.004 0.009∗∗∗ 0.007∗∗ 0.006 -0.006 -0.013∗

(0.003) (0.003) (0.003) (0.004) (0.006) (0.007)

% Eligible to vote (M3) 0.004 0.009∗∗∗ 0.007∗∗ 0.006 -0.006 -0.012∗

(0.003) (0.003) (0.003) (0.004) (0.006) (0.007)

% Eligible to vote (M4) 0.004 0.009∗∗∗ 0.007∗∗ 0.006 -0.006 -0.012∗

(0.003) (0.003) (0.003) (0.004) (0.006) (0.007)

% Eligible to vote (M5) 0.005 0.008∗∗∗ 0.008∗∗ 0.006 -0.007 -0.011
(0.003) (0.003) (0.004) (0.004) (0.006) (0.007)

% Eligible to vote (M6) 0.005∗ 0.009∗∗∗ 0.008∗∗ 0.006 -0.007 -0.011
(0.003) (0.003) (0.004) (0.004) (0.007) (0.007)

% Eligible to vote (LMB) 0.005∗ 0.011∗∗∗ 0.007∗∗ 0.007∗ -0.003 -0.004
(0.003) (0.003) (0.003) (0.004) (0.006) (0.006)

Bandwidth All +/− 25 +/− 10 +/− 5 +/− 2 Polynomial

Observations 13413 10229 4174 2072 810 13393

Note: Each row features estimates from a different harmonization model, except for row (7), which uses data and code from Lee et al. (2004).
Observation counts reflect those in row (7). Standard errors are in parenthesis. The unit of observation is the district-congress. Column (1)
features the entire sample. Columns (2) through (5) limit the sample by varying bandwidths around the 50 percent mark. Column (6) includes
a fourth order polynomial in Democratic vote share, which is interacted with the above-below 50 percent dummy. Standard errors are clustered
by district-decade. Significance levels are denoted by * p < 0.10, ** p < 0.05, *** p < 0.01.
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